Stochastic Komatu–Loewner evolutions and SLEs
نویسندگان
چکیده
منابع مشابه
Conformal Field Theories of Stochastic Loewner Evolutions . [ CFTs of SLEs ]
Stochastic Loewner evolutions (SLEκ) are random growth processes of sets, called hulls, embedded in the two dimensional upper half plane. We elaborate and develop a relation between SLEκ evolutions and conformal field theories (CFT) which is based on a group theoretical formulation of SLEκ processes and on the identification of the proper hull boundary states. This allows us to define an infini...
متن کامل2 Conformal Field Theories of Stochastic Loewner Evolutions . [ CFTs of SLEs ]
Stochastic Loewner evolutions (SLEκ) are random growth processes of domains in the two dimensional upper half plane which represent critical clusters. We elaborate and developp a relation between SLEκ evolutions and conformal field theories (CFT) which is based on a group theoretical formulation of SLEκ processes and on the identification of the proper hull boundary states. This allows us to de...
متن کاملLocalization for Linear Stochastic Evolutions
We consider a discrete-time stochastic growth model on d-dimensional lattice. The growth model describes various interesting examples such as oriented site/bond percolation, directed polymers in random environment, time discretizations of binary contact path process. We show the equivalence between the slow population growth and a localization property in terms of “replica overlap”. This extend...
متن کاملStochastic Evolutions of Point Processes
The asymptotic behavior of birth and death processes of particles in a compact space is analyzed. Births: Particles are created at rate λ+ and their location is independent of the current configuration. Deaths are due to negative particles arriving at rate λ − . The death of a particle occurs when a negative particle arrives in its neighborhood and kills it. Several killing schemes are consider...
متن کاملDipolar Sles
We present basic properties of Dipolar SLEs, a new version of stochastic Loewner evolutions (SLE) in which the critical interfaces end randomly on an interval of the boundary of a planar domain. We present a general argument explaining why correlation functions of models of statistical mechanics are expected to be martingales and we give a relation between dipolar SLEs and CFTs. We compute SLE ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2017
ISSN: 0304-4149
DOI: 10.1016/j.spa.2016.09.006